
Security Mechanisms for

Protection Against Double-Spending

Double-spending attacks are when an owner of an asset is able to
transfer it to two different parties, often simultaneously. There are two
broad categories of double-spending attacks:

• Expired ownership – In this scenario, a party attempts to send an
asset to another party after having already previously transferred its own-
ership away.

• Simultaneous transfers – A party may attempt to transfer the
ownership of an asset to two distinct parties at the same time

What information is being hidden? In the case
of expired ownership, the transaction history
of an asset must have omissions for the attack
to be successful. For simultaneous transfers,
knowledge of another transaction affecting a
given asset is omitted.

Generally, attacks of this nature work in cryptosystems where the
recipient is unaware that the file had either already been transferred,
or was in the process of being transferred to another. In particular,
these attacks can only be successful when the sender is able to hide
information from a recipient.

T O D A Q F I N A N C E 1



S E C U R I T Y M E C H A N I S M S F O R P R O T E C T I O N A G A I N S T D O U B L E - S P E N D I N G

Protection against expired ownership

TODA is designed to enforce the integrity of asset ownership by mak-
ing double-spending impossible. TODA requires that a sender provide
a fully-saturated merkle proof of provenance of any asset it has transferred

A merkle proof of provenance (MPOP) is titled
after its role in establishing an asset’s prove-
nance, positively answering the question, how
did this file come to be mine?. An MPOP
which is able to account for the activity of a file
during every cycle of its existence is termed
fully-saturated.

to a recipient. This proof is a chain of data, aligned with the cycles
present in the TODA chain, accounting for every opportunity where
the file may have changed ownership. Each component of this merkle
proof of provenance proves either that the asset was transacted to a new
owner, or not transacted1.

1 Structures which prove that an asset was not
transacted are termed null proofs.

c1 c2

∅

B

c3

TX

→ C

f1

B

c4

TX

∅

f1

. . .

C

TX

→ B

f1

A

Figure 1: A fully-saturated merkle proof of
provenance for c1 . . . c4.

In figure 1, f1 is transferred from A to B in c1. In c2, B provides a
proof that they did not transact. In c3, f1 is transferred from B to C.
In c4, C provides a proof that they transacted, but that this transaction
did not include f1, thereby maintaining their ownership of the file.

In an attack scenario, B from figure 1 may attempt to transfer
their ownership of f1 back to A in the following cycle, c5, after they
already transferred it to C in c3. In this case, A would examine the
fully-saturated proof from c1 to c4 to readily discover that B is no
longer the valid owner, and are not able to assign ownership of f1.

c1 c2

∅

B

c3

?

c4

TX

∅

f1

. . .

C

TX

→ B

f1

A

Figure 2: B attempts to hide their activity in
c3, but is unable to provide a fully-saturated
proof of f1.

c1 c2

∅

B

c3

TX

?

f1

B

c4

TX

∅

f1

. . .

C

TX

→ B

f1

A

Figure 3: B attempts to hide the specifics of
their transaction in c3, but is unable to provide
a valid null-proof of f1 for this cycle.

Consider a similar case, but where B hides the fact that they transferred
f1 away in c3 (figure 2). When A examines this proof, they would
discover it was not fully-saturated, and failed to account for either
the activity of B during c3, or more specifically, any action pertaining
to f1 during that cycle. An analogous attack where information is
omitted, but from the details of the transaction, rather than whether
a transaction occurred, is shown in figure 3. This again fails, as the
hidden information prevents B from demonstrating an uninterrupted
proof of ownership.

T O D A Q F I N A N C E 2



S E C U R I T Y M E C H A N I S M S F O R P R O T E C T I O N A G A I N S T D O U B L E - S P E N D I N G

Protection against simultaneous transfer

TODA’s protection against simultaneous transfer stems directly from
the fundamental architecture of the data representing a proof. In
this way, TODA distinguishes itself from the concerns inherent in
several cryptographic asset management schemes: it is not possible
to represent a simultaneous transfer attack in TODA.

A valid proof concerning an asset during a given cycle requires two
major components: a proof of the activity of its owner during that
cycle, referred to as the address proof, and a proof of whether the file
was transacted by the owner during that cycle, termed the file proof.

c

0 1

0

0 1

1

0

0 1

0

0 1

1

1

. . .

0 1

0

0 1

1

0

0 1

0

0 1

1

1C
yc

le
Tr

ie

25
6-

bi
ta

dd
re

ss

TX Packet Hash

Figure 4: The address proof is a trimmed
cycle trie, proving the value of a transaction
packet hash for a given address in a given
cycle.

Both the address proof and the file proof are derived from Merkle
tries2. The address proof is a minimal subgraph3 of a merkle trie

2 A Merkle trie is a cryptographic data struc-
ture with renewed research and industrial in-
terest following the repopularization of Merkle
trees in Bitcoin and similar systems. A Merkle
trie combines the properties of a Merkle tree
with those of a trie, meaning that it both pro-
vides cryptographic integrity, as well as deter-
ministic paths of its contents.
3 A minimal subgraph of a merkle trie is the
path from the root of the trie to the leaf of
interest, and including the merkle root of each
branching subtree. For further background on
the properties of merkle tries and their use in
TODA, refer to the TODA Primer.

which represents all owners who are transacting in a given cycle. The
file proof is a minimal subgraph a merkle trie representing a map of
all transacted assets to their destinations.

In order to effect the simultaneous transfer of f1 to both A and B, an
attacker might aim to construct two valid file proofs for f1. A file proof
is extracted from the transaction trie, representing all files transacted
by a given owner during a cycle. Table 1 shows the potential contents
of a file proof where three files have been transacted. This table is
converted into a trie where the paths of the trie represent the asset hash,
and the values represent the destination.

Asset Asset Hash Destination

f1 0xbf01... B
f2 0x3493... B
f3 0xf930... C

Table 1: The data represented in A’s transac-
tion trie in Cycle 1 (c1) of the above example.

It is at this point that the attacker encounters a problem. Due to the
deterministic path property of tries, they are unable to simply add (or
hide) another value for f1 within their transaction trie. In doing so,

T O D A Q F I N A N C E 3



S E C U R I T Y M E C H A N I S M S F O R P R O T E C T I O N A G A I N S T D O U B L E - S P E N D I N G

they would simply displace the initial value they had stored for f1 in
the structure.

c

TX

f1

. . .

. . .

Figure 5: There is only a single slot in a trie
data structure where a value can be stored for
f1 for a given address.

To arrive with a valid proof for each destination of f1 then, the
attacker would need to construct two distinct transaction tries: T1, T2.
Unfortunately, this too, doesn’t open an opportunity for the attacker to
gain an advantage. For a transaction trie to have any validity, it must
be attached to the cycle trie for a given cycle. And, as the cycle trie
holds the same deterministic path properties as the transaction trie, it
is not possible to simultaneously express a mapping to two distinct
transaction hashes during a single cycle.

Even if the attacker attempts to have both H(T1) and H(T2) incor-
porated into a cycle trie simultaneously, we have seen that this is not a
representation which is even supported at the level of the data structure.
Furthermore, at the level of the TODA Protocol, it is an error for any
participant to sign two distinct transaction tries within a given cycle,
and those parties constructing the cycle trie will, in fact, discard all
updates originating from that client.

Technical points of contact:

Adam Gravitis
Chief Technology Officer
adam.gravitis@todaqfinance.com

Dann Toliver
Co-Founder & Protocol Author
dann.toliver@todaqfinance.com

T O D A Q F I N A N C E 4


	Protection against expired ownership
	Protection against simultaneous transfer

