
TODA POP Structure

This document describes the TODA Protocol’s Proof Of Provenance (POP)
data structure. In particular, it provides the data layouts for version one
of the POP parts, which are used when hashing those parts for inclusion
as well as at rest and on the wire. It serves as the canonical source and
normative specification for all V1 POP structures.

In addition to the concrete data structure descriptions, this document
also includes brief descriptions of the algorithms for constructing certain
portions of that data structure, an abstract description of and motivation
for particular pieces, and proofs of the integrity guarantees provided by the
POP structure.

The components of the POP structure are presented here starting with
the chronologically first piece, the file kernel, and then building up from
the file detail, to the file trie, the transaction packet, and finally the cycle
proof. This is the way each POP slice is actually built, from the bottom
up.

When analyzing a POP slice in a proof context, however, it is customary
to start with the cycle root at the top and work down. This is the direction
of decomposition while proving the structural properties of the POP in the
later portion of this document.

Within this document the word hash refers to application of the cryp-
tographic hash function SHA256, or the result of said application, or a 32
byte string, depending on context. The word null used in a hash context
refers to the 32 byte string of zero bytes (i.e. the null hash).

T O D A R E S E A R C H I N S T I T U T E 1



T O D A P O P S T R U C T U R E

1 Structure Descriptions

1.1 File Kernel

A file is defined by a data structure consisting of five hashes concatenated
together. This is known as the file’s kernel, and the hash of the kernel is
known as the file’s identifier.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

issued cycle root

creator address

file type identifier

payload hash

encumbrance hash

Figure 1: The file kernel

The issued cycle root is the current cycle root at the time of the file’s
creation. For a file to be valid its initial transaction MUST take place in
the immediately following cycle.

The creator address is the address of the creator of this file. For a file
to be valid, the creator address MUST match the address of the initial
transaction.

The file type identifier is a file id or null. That is, a file’s type is either
the id of another file, which is designated as the type of this file, or it is null
if this file has no type. For a file f to be valid its file type MUST either
be null, or a file type file that was valid during f’s issued cycle root.

The payload hash is the hash of any arbitrary bytes that make up the
initial content of this file. There are no restrictions on this, and it is allowed
to be null. It is perfectly acceptable to re-use a file’s payload in a different
file.

The encumbrance hash is the hash of a proper encumbrance packet. The
encumbrance packet restricts instances of this file type (that is, files which
use this file as their type). Those restrictions are not within the scope of
this document. For a file to be valid its encumbrance hash MUST either
be null or the hash of a proper encumbrance packet.

The file’s kernel is globally unique. As a corollary each file has a unique
file identifier, or file id, which is the hash of its kernel. Section 2 proves
this as one of the fundamental properties of the POP structure.

T O D A R E S E A R C H I N S T I T U T E 2



T O D A P O P S T R U C T U R E

1.2 File Detail

The file detail contains updates intended to be made to a file. It is defined
as the concatenation of the following three hashes.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

destination address

proofs packet hash

metadata hash

Figure 2: The file detail

The destination address is the address of the intended recipient of this
file. If this file detail is part of the file’s POP, and there is no more recent
file detail in the file’s POP, then the destination address is said to own the
file. If the destination address is null then this file is considered invalid
beginning in this cycle.

The proofs packet contains proof that this file detail entry met any
requirements that were put on it by encumbrances or operations, if any
such requirements exist. If no such requirements exist then the proofs
packet hash should be null.

The metadata hash is the hash of arbitrary metadata to be associated
with this file in this cycle. If there is no metadata to associate with this
file, this should be the null hash. There are no restrictions on this field,
and like the payload field the protocol never examines it.

Note that the file detail does not need to be unique: many files in the
same transaction, and indeed across transactions, may all share the same
file detail hash. In such cases if uniqueness is desired one may hash a nonce
value for the metadata hash field.

A given file may have at most one file detail per cycle in its POP. This
is proven in Section 2 as one of the POP guarantees.

1.3 File Trie

The file trie is a Merkle trie which associates file ids with file detail hashes.
A file proof is the Merkle proof associating a single file detail with a file id.
The file detail associated with a file’s id by its owner’s file trie is the only
valid representation of operations on that file.

The file trie for a given address in a given cycle contains all of the
operations performed over files owned by that address in that cycle. Files
owned by that address that are not present in that file trie for that cycle
are said to have null proofs. Because the file detail referenced in the file
proof is the only valid representation of operations on a file, a file with a
null proof is demonstrably not operated on within the context of the file
trie.

T O D A R E S E A R C H I N S T I T U T E 3



T O D A P O P S T R U C T U R E

1.3.1 File Trie Wire Format

The file trie is constructed using an efficient trie building algorithm de-
scribed below. One effect of this is the simplicity and compactness of the
on-the-wire format for file tries and file proofs.

The file trie is the concatenation of a number of frames, where each frame
is the concatenation of the following two hashes:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

file id

value

Figure 3: File trie frame

When sent over the wire, the client SHOULD send the frames in
Lusin–Sierpiński-Kleene–Brouwer order by file id.

1.3.2 File Trie Hashing

The file trie is constructed locally, and may contain a very large number of
files. It therefore requires an optimized Merkle trie building algorithm.

Consider the following tree:

File ID Value

0000 V
0001 W
0010 X
0100 Y
0101 Z

To achieve consistent Merkle trie building, we employ the following
algorithm:

1. Sort the rows by file id
2. Find two adjacent rows whose bit strings share the longest common

prefix, e.g. File1 and File2
3. Merge those two rows, resulting in a single row that associates the lesser

of the two file ids with H(File1,Val1,File2,Val2)
4. Repeat steps two and three until a single file-value pair remains
5. Finally, calculate H(File,Value)

For the example above, first 0000 and 0001 would be merged, resulting in
0000 -> H(0000V0001W). Then 0100 and 0101 would be merged, resulting
in 0100 -> H(0100Y0101Z). Our table now looks like:

T O D A R E S E A R C H I N S T I T U T E 4



T O D A P O P S T R U C T U R E

File ID Value

0000 H(0000V0001W)
0010 X
0100 H(0100Y0101Z)

Then 0000 and 0010 would be merged, resulting in:
0000 -> H(0000H(0000V0001W)0010X).

Next, 0000 and 0100 would be merged, resulting in:
0000 -> H(0000H(0000H(0000V0001W)0010X)0100H(0100Y0101Z)).

Finally, the root hash of the Merkle trie is:
H(0000H(0000H(0000H(0000V0001W)0010X)0100H(0100Y0101Z))).

The hash of the final pair is called the file trie root, and is a component
of the transaction packet.

Note that because file ids are sent and stored ordered, step one can
typically be skipped, saving a factor of O(N log(N)) work during the setup.

Note also that step two can be performed on local maxima rather than
requiring a global maximum, changing this algorithm from O(N2) time to
O(N) time.

1.4 Transaction Packet

The transaction packet packages together the file trie root, the current cycle
root with the address and signature. The hash of this packet is incorporated
into the cycle trie as the value of this address.

The transaction packet is the concatenation of the following four hashes:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

current cycle root

address

file trie root

expansion slot

signature packet

Figure 4: The transaction packet

The current cycle root is required to prevent replay attacks.
The transaction packet (or txpx) is the only place the current cycle root

and signature appear for normal file transactions. This means you can
prepare file tries ahead of time, which is helpful if you have a large number
of files.

The expansion slot MUST be the null hash.
The first four hashes of the transaction packet, consisting of the current

cycle root, address, file trie, and expansion slot MUST be validly signed.

T O D A R E S E A R C H I N S T I T U T E 5



T O D A P O P S T R U C T U R E

Please see the address specification file for details on addresses and
signature packets.

1.5 Cycle Trie

The cycle trie is a prefix-encoded Merkle trie which associates addresses and
hashes of transaction packets. A cycle proof is the Merkle proof associating
an address with a transaction packet hash. The address contained in
a transaction packet, and the address associated with the hash of that
transaction packet must agree. If they do not, the address is treated as
though it is not present.

The cycle trie for a given cycle contains all the address/txpx pairs for
that entire cycle. Addresses that are not present in that cycle are said to
have a null proof, and the cycle trie contains those implicitly as well.

It is worth noting that the txpx is associated with a given address (by
the cycle trie), and must be signed by that same address. Additionally, any
operation performed must be included under a txpx that is signed by the
address performing it. Thus we have that no operation can be taken by an
address without a valid txpx referenced via the cycle proof for that address.
Consequently, if there is demonstrably no cycle proof for an address in a
cycle, it constitutes a proof that the address did not perform any operations
in that cycle. This is the cycle trie version of a null proof

The data structure for encoding a cycle proof is defined as follows:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left branch hash

L left prefix
(1-32 bytes)left prefix length

{
. . .

right branch hash

L right prefix
(1-32 bytes)right prefix length

{
. . .

construction data hash

Figure 5: Cycle proof frame (prefix blocks not necessarily word-aligned)

• The left and right prefix length, denoted as L in figure 5, are one byte
unsigned integers that are one less than the prefix length in bits. Thus
0x00 is a length of 1, and 0xFF is a length of 256 bits.

• The left and right prefix are left-padded to the nearest byte boundary.
The number one is represented as 0000 0001 (in binary).

• The length of the prefix field in bytes is equal to dprefix length/8e
• The left prefix MUST start with a 0. The right prefix MUST start with a 1.

T O D A R E S E A R C H I N S T I T U T E 6



T O D A P O P S T R U C T U R E

• The construction data hash is null in v1 except for the signature of the
gardener at the topmost branch, just below the cycle root.

Cycle proof The value of a branch is defined recursively as H(frame)
where the frame is defined as above, including both of the subbranch hashes
and the construction data hash. When a leaf is reached, the txpx value is
used instead.

frame1 frame2 . . . framen

Figure 6: Cycle proof assembled from varied-length frames

1.5.1 Null Cycle Proofs

The cycle trie encodes nulls in two ways: explicitly or implicitly.

• The cycle trie can explicitly encode that a particular branch is null by
specifying the value of that branch to be null (32 bytes of zeroes).

• The cycle trie can implicitly encode that a branch is null by compressing
it into a branch prefix. A branch prefix of 0101 (with length 4 bits)
specifies:

– This left hand branch branched at 0, as expected (and the right hand
sibling must start with 1).

– There are no branches starting with 00, 011, or 0100 in this cycle trie.
They have been skipped, and any addresses contained within those
branches are provably null.

This means that if an address does not participate in a cycle, the cycle
proofs of the closest address to its left or right which did participate serve
as the null proof of that address.

1.5.2 Forced Branch at Bit One

For implementation reasons, we force a branch at the first bit in the cycle
trie. This means that if all of the addresses which participated in a cycle
start with 0, or they all start with 1, then we encode an explicit null into
the other branch.

Example: Suppose the only address in a cycle started with 0x7. The
frame created would have the following two branches:

• Left: prefix length of 1 bit, prefix of 0, and a value of null.
• Right: prefix length of 256 bits, prefix exactly matching the entire

address, and a value of the address’s txpx.

T O D A R E S E A R C H I N S T I T U T E 7



T O D A P O P S T R U C T U R E

2 Proofs of Ownership Properties

The POP structure provides a foundation for creating and transferring
unique digital assets. As such it is necessary to demonstrate that this
structure upholds the expected properties, the most important of which is
that any given file has at most one owner at one time.

To do this we first we need to define what constitutes a valid POP (and
any POPs discussed will be expected to be valid unless stated otherwise).
For this definition, we start with the definition for a POP slice for a file
having a file id of id, belonging to a in cycle Ck as consisting of:

• The cycle hash Ck

• A Merkle proof associating the (possibly null) value p with the address
a in the cycle trie whose root hash is Ck (the cycle proof )

• If p is not null, the txpx whose hash is equal to p (the txpx )

• If p is not null, A Merkle proof associating the (possibly null) value f
with the file id id in the file trie whose root hash is the file trie root in
the txpx (the file proof )

• If f is not null (and implicitly, p is not null), a file detail whose hash is
equal to f (the file detail)

In the cases where the POP slice does not have a valid file detail (which is
equivalent to it not containing a destination address), the POP slice forms
a null proof.

We then define a POP for a file id id with respect to a sequence of cycles
C = {C0, ..., Cn} recursively as follows:

If the issued cycle root in the file kernel that hashes to id is Cn− 1, and
the creator address in that same file kernel is a0, then the POP is simply
the POP slice for the file id id, belonging to a0 in Cn. In order for the file
to exist, this POP slice must not be a null proof.

If the issued cycle root in the file kernel that hashes to id is Ck for
0 ≤ k < n− 1, then the POP for id in C is defined to consist of the POP
for id in {C0, ..., Cn−1} (which we’ll call POP ′), and the POP slice for id,
belonging to an in Cn. The value for an (the owner at the end of Cn−1 or at
the beginning of Cn) is taken to be the destination address in the file detail
from the most recent POP slice in POP ′ which is not a null proof (where
by most recent, we mean being for the cycle Ci with the largest satisfactory
value of i).

This definition leaves us to show that given a sequence of cycle roots and
a file id, that file has a single minimal POP with respect to that sequence.
This is proved using structural induction on the POP itself, starting from
that file’s first POP slice. Proving the uniqueness of ownership follows as
an easy corollary.

T O D A R E S E A R C H I N S T I T U T E 8



T O D A P O P S T R U C T U R E

Each POP slice represents either the creation of the file, a transaction
for that file (which may involve a change of ownership, or maintain the
current owner), a null proof showing that nothing happened to that file in
that cycle, or the burning of the file.

We rely on standard cryptographic assumptions, including the collision
resistance of cryptographic hash functions.

We define a minimal POP as a POP containing fully trimmed Merkle
proofs for each slice.

Note that the cycle trie and file trie must have the important properties
of a well-constructed Merkle trie. In particular, we require they be uniquely
represented by their root hash and return at most one value for any lookup
key in their intended search space.

Theorem 1. Given a file f with id id and a sequence C of cycle roots
{C0, C1, ..., Cn} which contains f’s cycle of creation, then f has a single
minimal POP with respect to C.

Proof. Consider a file g whose file id is also id. We will demonstrate that
the minimal POP of g over C, POP g, is necessarily identical to POP f , the
minimal POP of f over C. As a result, there is at most one minimal POP
that is valid for any file with the same file id as f. Since f necessarily has
only one file id (as defined in Section 1.1), then POP f is the only possible
minimal POP for f with respect to C (and f and g are in fact the same
file).

To do this, we proceed by employing structural induction on their proofs
of provenance, to prove that each POP slice must be equal.

Base case:
The first entries of POP f and POP g, called POP f

0 and POP g
0 respec-

tively, must be identical.

File kernel:
Because f and g have the same file id id, and because each file’s id is

the hash of its file kernel (from the definition in Section 1.1), then f and g
must have the same kernel.

Consequently f and g also must necessarily share the same creator ad-
dress a0 and issued cycle root Cj−1, as these are both defined to be com-
ponents of the file kernel.

It is worth noting that if the file id id doesn’t have a (known) hash
preimage of a suitable length to be a properly structured file kernel, then
it cannot be a valid file, and has no POP. Similarly, if its issued cycle root
Cj−1 is not in C, then it is not a valid file in that sequence of cycles, and
has no valid POP with respect to it. Finally, in the case of a null creator
address; since any file is considered destroyed once it has the null address
as an owner, f would be destroyed immediately upon creation, and does

T O D A R E S E A R C H I N S T I T U T E 9



T O D A P O P S T R U C T U R E

not ever exist as a valid file.

Cycle trie:
Because the issued cycle root is Cj−1 for both f and g, the cycle root of

POP f
0 and POP g

0 must be Cj as specified in Section 1.1.
Additionally since f and g share the creator address a0, they must share

that as the address of the initial transaction (by the definition in Section
1.1). Further, by Section 1.5 that address a0 must be the key in the cycle trie
for Cj that is associated with the txpx under which f and g are created.
Consequently the corresponding cycle proof (for a0 in Cj) is common to
POP f

0 and POP g
0 .

Further, the Merkle trie properties ensure there is at most one value p0

for key a0 in the cycle trie with root Cj , so that value must also be common
to both POP f

0 and POP g
0 .

Note that if p0 is null, then Section 1.5 gives that a0 did not take any
action in Cj . Because Section 1.2 requires a0 to act on a file whose file id
is id in Cj for there to be a valid file with that file id, then neither f nor
g exist as valid files.

It is also worth noting that a0 might not be an address corresponding to
any known (private) keys (in fact the null address is taken to be a special
case of this, in which the implicit consquences of not having a functional
owner are made explicit). In this case, the cycle proof will most likely be
null — though the case in which it isn’t, is examined in the transaction
packet.

Transaction packet:
Because Section 1.5 defines the value bound to a0 in Cj to be the hash

of the txpx for that address in that cycle, then the assumed hash properties
give either that there is a unique (known) hash preimage for p0, or that it
is impossible to construct POPs for f and g. This preimage being unique,
it must be equivalent for POP f

0 and POP g
0 .

If the preimage is not the correct length to be a txpx, then a0 cannot have
taken any valid actions in Cj , so neither f nor g exist as valid files, violating
our precondition that f and g are files. The requirements of Section 1.4
also give that this is the case if the current cycle root in the txpx is not
Cj−1, the address is not a0, or the signature packet does not constitute a
valid signature of the first 96 bytes of the txpx.

It is worth noting that in the case of an address for which no known
(private) keys exist, and for which the cycle proof in Cj is non-null, it is
essentially impossible to have a valid signature packet. Thus the txpx (or
cycle trie return value without a txpx as a preimage), provides that there
is no valid creation event for either f or g, and neither file exists.

If however, the txpx is valid, then (from its structure in 1.4), it must
contain a unique file trie root, F0, which is therefore shared by POP f

0 and
POP g

0 .

T O D A R E S E A R C H I N S T I T U T E 10



T O D A P O P S T R U C T U R E

File trie:
Because the file trie root is F0 for both POP f

0 and POP g
0 , they must

have identical file tries by the assumed Merkle trie properties.
Because f and g share the file id id, Section 1.3 provides that the any

operations taken by a0 in Cj on a file whose file id is id, must be represented
in the value returned by the file trie, when id is used as a lookup key.

If this return value is null, then since both f and g have that file
id, the requirement that any operations on them be represented by that
return value, implies that they cannot have been operated upon in Cj , and
therefore cannot exist (by the issued cycle root requirement from Section
1.1).

Alternately, if there is a return value, the Merkle trie properties ensure
it is a unique value f0 for the key id in the file trie with root F0, and that
value must be common to both POP f

0 and POP g
0 .

File detail:
Section 1.3 gives that f0 is the hash of the hash of the file detail describing

any operation by a0, in Cj , on a file whose file id is id.
In the event that there is no file detail d such that H(H(d)) = f0, or d

is not a valid file detail (e.g. it is not 96 bytes long, as required in Section
1.2), then the required creation operation cannot have happened, and once
again neither f or g exist.

If the file detail d is a valid file detail, then the hash properties give that
it must be the same for both POP f

0 and POP g
0 , because f0 is the same in

each. Then d must contain the destination address a1 as its first 32 bytes,
as defined in Section 1.2. In POP f

0 and POP g
0 the file detail d assigns f

and g, respectively, to the destination address a1 at the end of Cj .
Moreover, the components of a POP slice are the file detail, the file proof,

the transaction packet, the cycle proof, and the cycle root. Because each
component of POP f

0 and POP g
0 has been shown to be equal, then these

two POP slices must be equal, and we have completed the base case.

Inductive step: Show that POP f and POP g being equal through
cycle Ck−1 implies POP f

k and POP g
k must be equal as well.

The POP specification puts stringent requirements on the first slice of a
file’s POP. If those requirements are not met then it is not a TODA file: it
was not created, so it never existed.

Once a file has been created, it may also be destroyed. This could happen
by e.g. sending a file to the null address, which burns the file. Attempting
to add POP entries subsequent to the file being destroyed invalidates the
POP.

As such, if f was destroyed prior to Ck then POP f
k and POP g

k must be
equally non-existent. We will then limit our consideration to cases where f

T O D A R E S E A R C H I N S T I T U T E 11



T O D A P O P S T R U C T U R E

is still viable, but must also consider that f may be destroyed in cycle Ck.

Cycle trie:
As in the base case, the Merkle trie properties guarantee that there is a

unique cycle trie whose root is Ck.
Let ak be the address which owns f and g at the end of Ck−1 By definition

of ownership, this owner would be the address in the file detail of POP f
k−i

and POP g
k−i, for the lowest value of i ≥ 1 for which POP f

k−i and POP g
k−i

(being equal by our induction assumption, because i ≥ 1) contain a file
detail. Since the base case necessarily has a file detail, such an i must exist.

This ownership imposes the requirement (from the definition of a POP)
that ak must be the key for the cycle trie in POP f

k and POP g
k . The Merkle

trie properties ensure that there is at most one value pk for key ak in the
cycle trie with root Ck, so that value (possibly null) and its cycle proof
must be common to both POP f

k and POP g
k .

If pk is null, that indicates that address ak did not operate on any files
in Ck and continues to own f and g at the end of the cycle. This cycle
proof also constitutes the entire POP slice for each of POP f

k and POP g
k ,

satisfying the induction conclusion.
In the cases where pk is not a valid hash output (i.e. it is the wrong

length), there is no valid POP for either f or g past Ck−1. This case being
contrary to the assumptions in the theorem, can be ignored.

In the remaining cases, we proceed to inspect the transaction packet that
hashes to pk

Transaction packet:
It may be the case that the hash preimage of pk is not known, in which

case it is impossible to construct a conclusive POP slice for f and g in Ck,
(as the txpx that is the preimage of pk is a necessary component of the
POP slice when pk is not null), and is therefore impossible to construct a
POP for either file. This satisfies the conclusion of the theorem that there
is at most one valid POP for a given file and cycle sequence.

If however, the expected holds and pk has a hash preimage, then this
preimage is treated as unique (in accordance with the hash properties), and
expected to be a transaction packet satisfying certain properties, namely:

• that its current cycle root is Ck−1

• that its address is ak

• the signature represented by the signature hash is a valid signature of
the packet’s current cycle root, file trie root, and expansion slot (con-
catenated in that order).

If any of these properties fail to hold, then uniqueness of the hash preimage
of pk gives there cannot be a POP for either f or g past Ck−1. This case
contradicts the assumptions of the theorem, and can be ignored.

T O D A R E S E A R C H I N S T I T U T E 12



T O D A P O P S T R U C T U R E

In the (expected) case that all these properties hold, the txpx is unique,
and it contains a single file trie root Fk (by its definition in Section 1.4).
These are therefore shared by POP f

k and POP g
k .

File trie:
Because the file trie root is Fk for both POP f

k and POP g
k , they must

have identical file tries by the Merkle trie properties.
Because f and g share the file id id, the definition of a file proof in

Section 1.3 provides that this must be the key used in the file proof of
POP f

k and POP g
k .

The Merkle trie properties ensure that there is at most one value fk for
key id in the file trie with root Fk, so that value must be common to both
POP f

k and POP g
k .

That value might be null, indicating that address ak did nothing with f
in that cycle. By the definition of a POP slice, when there is a null value,
its file proof completes the POP slice, and provides the conclusion of the
induction step.

File detail:
The definition of the file trie in Section 1.3 provides that the value

associated with each key by the file trie is either null, or the hash of a hash
of a file detail. Having already considered the null case, we now examine
the case where fk is not null.

If fk is the wrong length to be a hash, then it cannot possibly be the
hash of a hash of a file detail; this is contrary to our theorem precondition
that f and g have valid proofs, and a case that we can ignore.

It may also be the case that there is no (known) d such that H(H(d)) =

f0. In this case, a valid proof cannot be constructed, and like in the other
cases of missing hash preimages, we satisfy the requirement that there is at
most one valid POP.

The remaining cases now provide that there is a d such that H(H(d)) =

f0. The first such case to examine is that d cannot be a valid file detail
(e.g. it is not 96 bytes long, as required in Section 1.2). This constitutes a
contradiction of our assumption that f and g have valid POPs, and can be
ignored.

Then d must be a valid file detail, and its first 32 bytes are the desti-
nation address ak+1 for both f and g. This completes both of their proofs
identically, providing the same owner ak+1 at the end of Ck, and satisfying
the requirements of the induction step.

Having exhausted all possible cases for the induction step, and satisfied
its requirement in each case, and having proven the desired result for the
base case, we have by induction that f and g have the same minimal
POP. Thus, for any file f with id id and a sequence C of cycle roots
{C0, C1, ..., Cn} which contains f’s cycle of creation, then f has a single
minimal POP with respect to C.

T O D A R E S E A R C H I N S T I T U T E 13



T O D A P O P S T R U C T U R E

2.1 Unique Ownership of Each File

Corollary 1. There is at most one address that can prove ownership of a
file f in cycle k.

Proof. From the proof of uniqueness of the POP, which depends on unique
ownership of f at the end of each cycle in a (partial) POP, and from a POP
being the exclusive mechanism to prove ownership of a file, the desired result
follows automatically.

T O D A R E S E A R C H I N S T I T U T E 14


	Structure Descriptions
	File Kernel
	File Detail
	File Trie
	File Trie Wire Format
	File Trie Hashing

	Transaction Packet
	Cycle Trie
	Null Cycle Proofs
	Forced Branch at Bit One


	Proofs of Ownership Properties
	Unique Ownership of Each File


